Chapter VI

The Quantum Enveloping Algebra
of s[(2)

The aim of Chapters VI-VIT is to construct a Hopf algebra U, = U, (sl(2))
which is a one-parameter deformation of the enveloping algebra of the Lie
algebra sl(2) investigated in Chapter V, and which is in duality with the
Hopf algebra SL,(2) defined in Chapter IV. It will be our second main
example of a quantum group. When the parameter ¢ is not a root of unity,
the algebra U, has properties parallel to those of the enveloping algebra
of s[(2). In the present chapter we classify the simple finite-dimensional
modules of U, and determine its centre. We close the chapter with a few
considerations on the case when ¢ is a root of unity.

We assume throughout this chapter that the ground field k is the field
of complex numbers.

VI.1 The Algebra U,(s((2))

Let us fix an invertible element g of k different from 1 and —1 so that the

fraction q_}},l is well-defined. We introduce some notation.

For any integer n, set

n

Q" —q
[n] = — 1
q—4q
These g-analogues are more symmetric than the ones defined in IV.2, as
shown by the relations

— qn—l _f_qn*S +.“_|_q—n+3 +q—n+1. (11)

[-n]=—[n] and [m+n]=q"[m]+q""[n]. (1.2)
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Observe that, if g is not a root of unity, then [n] # 0 for any non-zero
integer. This is not so when ¢ is a root of unity. In that case, denote by d
its order, i.e., the smallest integer > 1 such that ¢ = 1. Since we assume
¢ # 1, we must have d > 2. Define also

e~{ d ifdisodd

d/2 when d is even. (1.3)

Let us agree that d = e = 0o when ¢ is not a root of unity. Now it is easy
to check that
[n] =0 < n = 0 modulo e. (1.4)

We also have the following versions of factorials and binomial coefficients.
For integers 0 < k < n, set [0]! =1,
(k]! = [1][2] . .. [k] (1.5)

if K > 0, and
["]_¢ (1.6)
k| [k — K]V '

These g-analogues are related to those of IV.2 by

[n] = g~ "=n (n) )l = q”"("‘l)/Q(n)! (1.7)

q2, q27

{ Z ] _ gkn=h) ( Z >q2, (1.8)

With this new notation we can rewrite Proposition IV.2.2 as follows. If x
and y are variables subject to the relation yz = ¢*zy, then we have (n > 0)

and

(x+y)" — Z qk(nfk) [ Z } :Ckyn—k_ (1.9>
k=0

Definition VI.1.1. We define U, = U,(sl(2)) as the algebra generated by
the four variables E,F, K, K~ with the relations

KK '=K'K=1, (1.10)
KEK™'=¢’E, KFK™!=q?F, (1.11)
and )
K-K~
q—q

The rest of the section is devoted to a few elementary properties of U,.
The following lemma has an easy proof left to the reader.
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Lemma VI.1.2. There is a unique algebra automorphism of U, such that

wE)=F, wF)=FE, wkK)=K"

The automorphism w is sometimes called the Cartan automorphism. We
now state a g-analogue of Lemma V.3.1.

Lemma VI.1.3. Let m > 0 and n € Z. The following relations hold in
U,:

q
EMK" — q—2mn K'nEm7 FMK" = q2mn KnFm’

—(m—l)K _ qm—lel

B,F"] = [m]Fm 1 i
m—lp —(m—l)K—l
= [m) 2 7_ Frl
q—q
—(m—l)K__ m—1p—1
(E™F] = [m]? < Em!
q—q
G A St i
g—q7t

PROOF. The first two relations result trivially from Relations (1.11). The
third one is proved by induction on m using

K-K!

[E,F™] = [E,F" ' |F + F" ' [E,F] = [E,F™'|F + F™~! -
9—4q

as in the proof of Lemma V.3.1. Applying the automorphism w to the third
relation, one gets the fourth one. i

We now describe a basis of U, by showing that U, is an iterated Ore
extension. We refer to 1.7-8 for information concerning Ore extensions.

Proposition V1.1.4. The algebra U, is Noetherian and has no zero divi-
sors. The set {EZ‘FjKZ}Z-JeN;ZEZ is a basis of U,.

PROOF. Define 4, = k[K, K ']. We shall construct two Ore extensions
A} C A, such that A, is isomorphic to U,. First, observe that the algebra
A, has no zero divisors and is Noetherian as a quotient of a (Noetherian)
two-variable polynomial algebra. The family {K Z}eez is a basis of A,.

Consider the automorphism «; of A, determined by o, (K) = ¢*K and
the corresponding Ore extension A; = Ay[F, ay,0]: the latter has a basis
consisting of the monomials {FjKe}jeNJeZ. An argument analogous to
the one used to prove Lemma IV.4.2 shows that A, is the algebra generated
by F, K, K~! and the relation FK = ¢*KF.
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We now build an Ore extension A, = A, [E, ay, 6] from an automorphism
a; and an «;-derivation of A;. The automorphism «, is defined by

o (FIKY = ¢ *FIK". (1.13)

Let us take as given for a moment that there exists an o,-derivation 6 such

that
K- Kt

q—q!
Then the following relations hold in A,:

8(F) = and 6(K) =

EK = o) (K)E+ §(K) = ¢ *KE

and
K-—-K!

EF = a,(F)E + §(F) = FE +

From these one easily concludes that A, is isomorphic to U,. It then re-
sults from Corollary 1.7.2 and from Theorem 1.8.3 that U, has the required
properties. O

It remains to prove the following technical lemma in order to complete
the proof of Proposition 1.4.

Lemma VI1.1.5. Denote by 6(F)(K) the Laurent polynomial I; g{ll, and
set 6(K*) =0 and

S(FIK*) = ZFJ L6(F) (¢ ¥ K)K* (1.14)

when j > 0. Then § extends to an o, -derivation of A;.

PrROOF. We must check that, for all j,m € N and all ¢,n € Z, we have
S(FIK' - F™K™) = o (FIKY§(F™K™) + §(FPKYF™K™.  (1.15)

Let us compute the right-hand side of (1.15) using (1.11), (1.13), and (1.14).
We have

(FJKZ) (F™K™) + 6(F/ K4 F™K™

,_.

_ —2@ FjKZFm‘lé(F) (q—21K)Kn
i=0

j-
+ Y FITS(F) (g P K)K P K"
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m—1
— q—%—?é(m~1) Fj+m~15(F) (q~2iK)Ké+n
=0
j—1
+ Z q—QZm Fm+j716(F) (q—Zi—QmK)KZ-}-n
=0
m—1 )
_ q—2£m Fm+]—16(F) (q—ZiK)KE-}-n
=0
Jj+m—1 ' ‘
+ Z q-ZEm Fm+j—16(F)(q—21K)KZ+n
J+m—1

_ q-%m ( Z Fj+m_16(F) (q—ZiK)Ké+n>
=0

— q—2£m5(Fj+mKé+n)
= §(F'K'-F™K").

VI.2 Relationship with the Enveloping Algebra of
s[(2)

One expects to recover U = U(sl(2)) from U, by setting ¢ = 1. This is
impossible with Definition 1.1. So we first have to give another presentation
for U, .

q

Proposition VI.2.1. The algebra U, is isomorphic to the algebra Ué gen-
erated by the five variables E, F, K, K~', L and the relations

KK '=K'K=1, (2.1)

KEK'=¢*E, KFK!'=q¢%F, (2.2)

[EaF]:Lv (q_q~1)L:K_K-17 (23)
[L,E]=q(EK + K™'E), [L,Fl=—-¢ "(FK+ K 'F). (2.4)

Observe that, contrary to U,, the algebra U; is defined for all values of
the parameter ¢, in particular for ¢ = 1. In some sense, it would have been
better to proceed through the whole theory of the quantum enveloping
algebra of sl(2) with Ué rather than with U, but the simpler presentation
given in Section 1 is sufficient for our purposes.

PROOF. Set
e(E)=E, ¢F)=F, ¢K)=K
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and
YE)=E, ¢Y(F)=F, K)=K, ¢(L)=I[EF].
It is clear that ¢ gives rise to a well-defined morphism of algebras from U,
to U, . Let us show that ¢ : U, — U, is well-defined too. It suffices to check
that the images under 1 of the defining Relations (2.1) hold in the algebra
U,. This is clearly true for Relations (2.1-2.2) and for [E, F] = L. For the
remaining relation in (2.3) we have
(a-a (L) =(¢g-¢ "B Fl=K-K"
For the first relation in (2.4) we get
1 _
(*-1)EK + (¢ - 1)K 'E
q—q!
= ¢(EK+ K 'E).

One derives the last relation in a similar fashion.
The reader may now verify that ¢ and ¢ are reciprocal algebra mor-
phisms by checking the necessary relations on the generators. a

The relationship with the enveloping algebra U is given in the following
statement.

Proposition VI1.2.2. If g =1, we have
Uy 2U[K]/(K*~1) and U=U;/(K-1).

PROOF. It suffices to prove the first isomorphism. Now U] has the following
presentation: it is generated by E, F, K, K~!, L and Relations (2.1-2.4) in
which ¢ has been replaced by 1, namely

KK '=K'K=1, (2.5)

KEK™'=E, KFK '=F, (2.6)

[E,F]=L, K-K'=0, (2.7)

[L,E] = (EK + K~'E), [L,F]=—(FK+ K 'F). (2.8)

Relations (2.5-2.6) imply that K is central. Relation (2.7) yields K? = 1,
which allows one to rewrite the Relations (2.8) as

[L,E] =2EK, [L,F]=—2FK. (2.9)

We then get an isomorphism from Uj to U[K]/(K? — 1) by sending E to

XK, FtoY, KtoK,and Lto HK. O

In particular, the projection of U] onto U is obtained by sending E to
X,FtoY, K tol, and L to H. One may use this projection to rederive
certain relations in U (for instance, Lemma V.3.1) from their g-analogues
in U’.

q



V1.3 Representations of U, 127
VI.3 Representations of U,

We assume in this section that the complex parameter ¢ is not a root of
unity. Our aim is to determine all finite-dimensional simple U -modules
under this assumption by closely following the methods of Section V .4.

For any U ,-module V' and any scalar A # 0, we denote by V? the subspace
of all vectors v in V such that Kv = Av. The scalar X is called a weight of
Vif VA £ {0}.

Lemma VI.3.1. We have EV> C V9 and FV> c V4 X,
PROOF. For v € V> we have
K(Ev) = ¢*E(Kv) = ¢°AEv and K(Fv)=q ?F(Kv) = q %\ Fu.
O

Definition VI.3.2. Let V be a U -module and A be a scalar. An element
v # 0 of V is a highest weight vector of weight A if Ev =0 and if Kv = Av.
A U,-module is a highest weight module of highest weight X if it is generated
by a highest weight vector of weight X.

Proposition VI.3.3. Any non-zero finite-dimensional U,-module V' con-
tains a highest weight vector. Moreover, the endomorphisms induced by E
and F on 'V are nilpotent.

PROOF. Since k = C is algebraically closed and V is finite-dimensional,
there exists a non-zero vector w and a scalar « such that Kw = aqw. If
Ew = 0, the vector w is a highest weight vector and we are done. If not,
let us consider the sequence of vectors E"w where n runs over the non-
negative integers. According to Lemma 3.1, it is a sequence of eigenvectors
with distinct eigenvalues; consequently, there exists an integer n such that
E™w # 0 and E""'w = 0. The vector E™w is a highest weight vector.

In order to show that the action of F on V is nilpotent, it suffices to check
that 0 is the only possible eigenvalue of E. Now, if v is a non-zero eigen-
vector for E with eigenvalue X # 0, then so is K™v with eigenvalue g~2" \.
The endomorphism E would then have infinitely many distinct eigenvalues,
which is impossible. The same argument works for F'. O

Lemma VI1.3.4. Let v be a highest weight vector of weight . Set vy = v
and v, = ﬁF”v forp>0. Then

=(P=1) ) — gP— 1)1
- q q
Kv,=X"*v,, Ev,= = Up—1

PROOF. These relations result from Lemma 1.3. O

We now determine all finite-dimensional simple U -modules.
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Theorem VI.3.5. (a) Let V be a finite-dimensional U,-module generated
by a highest weight vector v of weight A. Then

(i) The scalar A is of the form A = £ ¢" where e = 1 and n is the integer
defined by dim (V) =n + 1.

(ii) Setting v, = FPv/[p]!, we have v, = 0 for p > n and, in addition,
the set {v = vy, vy,...,v,} is a basis of V.

(iii) The operator K acting on V is diagonalizable with the (n+1) distinct
eigenvalues {eq", eq" "2, ... eq "2 eq7"}.

(iv) Any other highest weight vector in 'V is a scalar multiple of v and is
of weight .

(v) The module V is simple.

(b) Any simple finite-dimensional U, -module is generated by a high-
est weight vector. Two finite-dimensional U-modules generated by highest
wetght vectors of the same weight are isomorphic.

PROOF. (a) According to Lemma 3.4, the sequence {v, } > is a sequence of
eigenvectors for K with distinct eigenvalues. Since V is finite-dimensional,
there has to exist an integer n such that v,, # 0 and v, ; = 0. The formulas
of Lemma 3.4 then show that v,, = 0 for all m > n and v,, # 0 for all
m < n. By Lemma 3.4, we also have

q—n)\ _ qn)\—l
— 0

OZE”nJrl: q—q !

-
Hence, ¢""\ = ¢"A~!, which is equivalent to A = +¢". The rest of the
proof of (i)—(iil) is as in the classical case (see Theorem V.4.4).

(iv) Let v' be another highest weight vector. It is an eigenvector for the
action of K; hence, it is a scalar multiple of some vector v;. But, again by
Lemma 3.4, the vector v, is killed by F if and only i = 0.

(v) Let V' be a non-zero U, -submodule of V and let v’ be a highest
weight vector of V. Then v’ also is a highest weight vector for V. By (iv),
v’ has to be a non-zero scalar multiple of v. Therefore v is in V'. Since v
generates V', we must have V C V’, which proves that V is simple.

(b) The proof is the same as for Theorem V.4.4 (b). O

Theorem 3.5 implies that, up to isomorphism, there exists a unique sim-
ple U -module of dimension n+1 and generated by a highest weight vector
of weight £¢™. We denote this module by V, ,, and the corresponding mor-
phism of algebras U, — End(V,,,) by Pe n- Observe that the formulas of

en
Lemma 3.4 may be rewritten as follows for V,

Kv, = eq" Py

(3.1)

p7

Ev,=¢en—-p+1lv,_q, (3.2)
and

Fo, ;= [p]v, (3.3)
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As a special case, we have V_ ; = k. The morphism p, , is given by

peo(K) =€ peo(E) = peo(F) =0

We shall see in VIL.1 that p, ; may be identified with the counit of a Hopf
algebra structure on U,. It will imply that the module V; ; is trivial and
that any trivial U -module is isomorphic to a direct sum of copies of V] ;.
On the other hand, the module V_, , is not trivial.

On the (n+ 1)-dimensional module V_, , the generators E, F' and K act

g,m’?

by operators that can be represented on the basis {v,,vy,...,v,} by the
matrices
0 [n] 0 - 0
0 0 =1 -+ 0
pE,TL(E) =& : ‘ ' . :
0 0 1
0 O 0
0o 0 --- 0 O
1 0 -~ 0 O
pe,n(F) = 0 [2] 0 0
0 0 [n] 0O
and
q" 0 0 0
0 ¢"? 0 0
pen(K) =¢ :
0 0 —n+2 0
0 0 0 qa"

So far, we have built U ,-modules generated by highest weight vectors
whose weights A had special values. Let us now show that there exist highest
weight modules with arbitrary highest weights.

Let us fix a scalar A # 0. Consider an infinite-dimensional vector space
V(X) with denumerable basis {v;};en- For p > 0, set

2 -1, _y—1,2
Kv, =g Pv,, K v,=X""q¢"v, (3.4)
A=A
oy = Ty Foy=fptllng (39)

and Ev, = 0.

Lemma VI.3.6. Relations (3.4-3.5) define a U,-module structure on V(X).
The element v, generates V (\) as a U,-module and is a highest weight vec-
tor of weight \.



130 Chapter VI. The Quantum Enveloping Algebra of §{(2)

PRoOOF. Immediate computations yield

KK‘lvp = Uy,
KEK'lvp: ¢*Ev

K_lKvp =1,

-1 _ -2
» BEFK v, =gq Fu,.

We also have

gPA—gPA ! P GEED N )
B.Fp, = (p+ 1=t - ),
q—2p/\ q2p)\71
B g—q T 7
K—-K!
N

This proves that Relations (3.4-3.5) define a U,-module structure on V(}).

Next, we have Kv, = Av, and Ev, = 0, which means that v, is a highest
weight vector of weight A. Finally, (3.5) implies that v, = FPv/[p]! for all
p, which proves that V() is generated by vj. 0O

By analogy with the classical case, the highest weight U, -module V()
is called the Verma module of highest weight A. It enjoys the following
universal property.

Proposition VI.3.7. Any highest weight U,-module V' of highest wetght
X is a quotient of the Verma module V(X).

PROOF. Let v be a highest weight vector generating V. We define a linear
map f from V(X) to V by f(v,) = 1/[p]! FPv. Lemma 3.4 implies that f is
U,-linear. Since f(vy) = v generates V, the map [ is surjective. a

In particular, the simple finite-dimensional module V, ,, described above
is a quotient of the Verma module V(e¢™). As a consequence, the module
V(A) cannot be simple when A is of the form £¢™ where n is a nonnegative
integer.

V1.4 The Harish-Chandra Homomorphism and
the Centre of U,

Our next objective is to describe the centre Z, of U, in case ¢ is not a root
of unity. We assume this throughout this section.

We start by introducing a special central element of U,. It is sometimes
called the quantum Casimir element.



