
Chapter VI 
The Quantum Enveloping Algebra 
of £1[(2) 

The aim of Chapters VI-VII is to construct a Hopf algebra Uq = Uq (5[(2)) 
which is a one-parameter deformation of the enveloping algebra of the Lie 
algebra 5[(2) investigated in Chapter V, and which is in duality with the 
Hopf algebra SLq(2) defined in Chapter IV. It will be our second main 
example of a quantum group. When the parameter q is not a root of unity, 
the algebra Uq has properties parallel to those of the enveloping algebra 
of 5[(2). In the present chapter we classify the simple finite-dimensional 
modules of Uq and determine its centre. We close the chapter with a few 
considerations on the case when q is a root of unity. 

We assume throughout this chapter that the ground field k is the field 
of complex numbers. 

VI. 1 The Algebra Uq(s[(2)) 

Let us fix an invertible element q of k different from 1 and -1 so that the 
fraction is well-defined. We introduce some notation. q-q 

For any integer n, set 

[n] = q; = qn-l + qn-3 + ... + q-n+3 + q-n+l. (1.1) 

These q-analogues are more symmetric than the ones defined in IV.2, as 
shown by the relations 

[-n] = -[n] and [m + n] = qn[m] + q-m[n]. (1.2) 
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Observe that, if q is not a root of unity, then [n] =1= 0 for any non-zero 
integer. This is not so when q is a root of unity. In that case, denote by d 
its order, i.e., the smallest integer> 1 such that qd = 1. Since we assume 
q2 =1= 1, we must have d > 2. Define also 

{ d if d is odd 
e = d/2 when d is even. (1.3) 

Let us agree that d = e = 00 when q is not a root of unity. Now it is easy 
to check that 

[n] = 0 n == 0 modulo e. (1.4) 

We also have the following versions of factorials and binomial coefficients. 
For integers 0 :::; k :::; n, set [OJ! = 1, 

[k]! = [1][2] ... [k] (1.5) 

if k > 0, and 

[ n ] [n]! 
k - [k]![n - k]!· (1.6) 

These q-analogues are related to those of IV.2 by 

and 

[ ] = q-k(n-k) ( ) q2 • (1.8) 

With this new notation we can rewrite Proposition IV.2.2 as follows. If x 
and yare variables subject to the relation yx = q2 xy, then we have (n > 0) 

(x + y)n = t l(n-k) [ ] xkyn-k. 
k=O 

(1.9) 

Definition VI. 1. 1. We define Uq = Ui5[(2)) as the algebra generated by 
the four variables E, F, K, K- 1 with the relations 

and 

KK- 1 = K-1K = 1, 

KEK-1 = q2E, KFK- 1 = q-2F, 

[E,F] = K - K- 1 

q _ q-l 

(1.10) 

(1.11) 

(1.12) 

The rest of the section is devoted to a few elementary properties of Uq . 

The following lemma has an easy proof left to the reader. 
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Lemma VI.1.2. There is a unique algebra automorphism of Uq such that 

w(E) = P, w(P) = E, w(K) = K- 1 . 

The automorphism w is sometimes called the Cartan automorphism. We 
now state a q-analogue of Lemma V.3.1. 

Lemma VI.1.3. Let m 2: 0 and n E Z. The following relations hold in 
Uq : 

-(m-1) K _ m-1 K- 1 
[m] p m - 1 q 

q _ q 1 

m-1 K _ -(m-1) K- 1 
[m] q q -1 p m - 1 , 

q-q 

-(m-1) K _ m-1 K- 1 
[m] q q E m - 1 

q _ q-1 

m-1 K _ -(m-1) K- 1 
[m] E m - 1 q q _ 

q _ q 1 

PROOF. The first two relations result trivially from Relations (1.11). The 
third one is proved by induction on musing 

[E, pm] = [E, pm-1]p + pm-1 [E, P] = [E, pm-1]p + p m - 1 K -
q-q 

as in the proof of Lemma V.3.1. Applying the automorphism w to the third 
relation, one gets the fourth one. D 

We now describe a basis of Uq by showing that Uq is an iterated Ore 
extension. We refer to 1.7-8 for information concerning Ore extensions. 

Proposition VI.1.4. The algebra Uq is Noetherian and has no zero divi-

sors. The set {Ei pj KRL,jEN; fEZ is a basis of Uq . 

PROOF. Define AD = k[K,K- 1]. We shall construct two Ore extensions 
A1 C A2 such that A2 is isomorphic to Uq . First, observe that the algebra 
AD has no zero divisors and is Noetherian as a quotient of a (Noetherian) 
two-variable polynomial algebra. The family {KR} REZ is a basis of AD. 

Consider the automorphism a 1 of AD determined by a 1 (K) = q2 K and 
the corresponding Ore extension A1 = AD [P, a 1 ,0]: the latter has a basis 
consisting of the monomials {pj KR}jEN,fEZ. An argument analogous to 
the one used to prove Lemma IV.4.2 shows that A1 is the algebra generated 
by P,K,K- 1 and the relation PK = q2KP. 
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We now build an Ore extension A2 = Al [E, aI' 8] from an automorphism 
a 1 and an aI-derivation of AI' The automorphism a 1 is defined by 

(1.13) 

Let us take as given for a moment that there exists an aI-derivation 8 such 
that 

8(F) = K - and 8(K) = O. 
q _ q 1 

Then the following relations hold in A2 ; 

EK = a 1 (K)E + 8(K) = q-2 KE 

and 
K _K-1 

EF=a1 (F)E+8(F)=FE+ -1 
q-q 

From these one easily concludes that A2 is isomorphic to Uq . It then re-
sults from Corollary 1. 7.2 and from Theorem 1.8.3 that Uq has the required 
properties. D 

It remains to prove the following technical lemma in order to complete 
the proof of Proposition 1.4. 

Lemma VI.1.5. Denote by 8(F)(K) the Laurent polynomial , and 
set 8(KR) = 0 and 

j-l 

8(Fj KR) = L Fj- 18(F)(q-2iK)KR (1.14) 
i=O 

when j > O. Then 8 extends to an a 1 -derivation of AI' 

PROOF. We must check that, for all j, mEN and all £, nEZ, we have 

(1.15) 

Let us compute the right-hand side of (1.15) using (1.11), (1.13), and (1.14). 
We have 

m-1 

i=O 
j-1 

+ L pi-18(F)(q-2iK)KRFmKn 
i=O 
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m-l L q-2£-2£(m-l) FJ+m- 18(F)(q-2iK)KHn 

i=O 

j-l 

+ L q-2Rm F m+j-18(F)(q-2i-2m K)KHn 
i=O 

m-l L q-2Rm F m+j-18(F)(q-2iK)KHn 
i=O 

j+m-l 

+ L q-2Rm Fm+j-18(F)(q-2iK)KHn 

i=m 
j+m-l 

q-2Rm ( L FJ+m- 18(F) (q- 2iK)KHn ) 
i=O 

q-2£m8(FJ+m KHn) 

8(Fj K£ . F m Kn). 

D 

VI. 2 Relationship with the Enveloping Algebra of 
.5[(2) 

One expects to recover U = U(5[(2)) from Uq by setting q = 1. This is 
impossible with Definition 1.1. So we first have to give another presentation 
for Uq . 

Proposition VI.2.1. The algebra Uq is isomorphic to the algebra gen-
erated by the five variables E, F, K, K- 1 ,L and the relations 

KK- 1 = K- 1 K = 1, (2.1) 

KEK- 1 = q2E, KFK- 1 = q-2F, (2.2) 

[E,Fj=L, (q-q-l)L=K-K-1, (2.3) 

[L,Ej=q(EK+K-1E), [L,Fj=-q-l(FK+K-1F). (2.4) 

Observe that, contrary to Uq , the algebra is defined for all values of 
the parameter q, in particular for q = 1. In some sense, it would have been 
better to proceed through the whole theory of the quantum enveloping 
algebra of 5[(2) with rather than with Uq , but the simpler presentation 
given in Section 1 is sufficient for our purposes. 

PROOF. Set 
cp(E) = E, cp(F) = F, cp(K) = K 
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and 
?/J(E) = E, ?/J(F) = F, ?/J(K) = K, ?/J(L) = [E, F]. 

It is clear that r.p gives rise to a well-defined morphism of algebras from Uq 

to Let us show that ?/J : ----+ Uq is well-defined too. It suffices to check 
that the images under ?/J of the defining Relations (2.1) hold in the algebra 
Uq . This is clearly true for Relations (2.1 2.2) and for [E, F] = L. For the 
remaining relation in (2.3) we have 

(q - = (q - F] = K -

For the first relation in (2.4) we get 

[?/J(L),?/J(E)] = [[E,F],E] 1 [K _ 
q _ 

(q2 _ l)EK + (q2 _ E 
q _ 

q (EK + E). 

One derives the last relation in a similar fashion. 
The reader may now verify that r.p and ?/J are reciprocal algebra mor-

phisms by checking the necessary relations on the generators. 0 

The relationship with the enveloping algebra U is given in the following 
statement. 

Proposition VI.2.2. If q = 1, we have 

U{ U[K]/(K2 - 1) and U U{/(K - 1). 

PROOF. It suffices to prove the first isomorphism. Now U{ has the following 
presentation: it is generated by E, F, K, L and Relations (2.1 in 
which q has been replaced by 1, namely 

K = K = 1, (2.5) 

= E, = F, (2.6) 

[E, F] = L, K - = 0, (2.7) 

[L, E] = (EK + [L, F] = -(F K + F). (2.8) 

Relations imply that K is central. Relation (2.7) yields K2 = 1, 
which allows one to rewrite the Relations (2.8) as 

[L,E] = 2EK, [L,F] = -2FK. (2.9) 

We then get an isomorphism from U{ to U[K]/(K2 - 1) by sending E to 
X K, F to Y, K to K, and L to H K. 0 

In particular, the projection of U{ onto U is obtained by sending E to 
X, F to Y, K to 1, and L to H. One may use this projection to rederive 
certain relations in U (for instance, Lemma V.3.1) from their q-analogues 
. u' In q' 
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VI. 3 Representations of Uq 

We assume in this section that the complex parameter q is not a root of 
unity. Our aim is to determine all finite-dimensional simple Uq-modules 
under this assumption by closely following the methods of Section V.4. 

For any Uq-module V and any scalar A =I=- 0, we denote by VA the subspace 
of all vectors v in V such that K v = Av. The scalar A is called a weight of 
V if VA =I=- {O}. 

Lemma VI.3.1. We have EVA C Vq2A and FVA C Vq-2 A. 

PROOF. For v E VA we have 

o 

Definition VI.3.2. Let V be a Uq-module and A be a scalar. An element 
v =I=- 0 of V is a highest weight vector of weight A if Ev = 0 and if K v = Av. 
A Uq-module is a highest weight module of highest weight A if it is generated 
by a highest weight vector of weight A. 

Proposition VI.3.3. Any non-zero finite-dimensional Uq-module V con-
tains a highest weight vector. Moreover, the endomorphisms induced by E 
and F on V are nilpotent. 

PROOF. Since k = C is algebraically closed and V is finite-dimensional, 
there exists a non-zero vector wand a scalar a such that K w = aw. If 
Ew = 0, the vector w is a highest weight vector and we are done. If not, 
let us consider the sequence of vectors Enw where n runs over the non-
negative integers. According to Lemma 3.1, it is a sequence of eigenvectors 
with distinct eigenvalues; consequently, there exists an integer n such that 
Enw =I=- 0 and En+1w = O. The vector Enw is a highest weight vector. 

In order to show that the action of E on V is nilpotent, it suffices to check 
that 0 is the only possible eigenvalue of E. Now, if v is a non-zero eigen-
vector for E with eigenvalue A =I=- 0, then so is Knv with eigenvalue q-2n A. 
The endomorphism E would then have infinitely many distinct eigenvalues, 
which is impossible. The same argument works for F. 0 

Lemma VI.3.4. Let v be a highest weight vector of weight A. Set Vo = v 
and vp = [;J! FPv for p > O. Then 

q-(p-1) A _ qP-1 A-I 
Evp = -1 vp_ 1, 

q-q 

PROOF. These relations result from Lemma 1.3. o 

We now determine all finite-dimensional simple Uq-modules. 
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Theorem VI.3.5. (a) Let V be a finite-dimensional Uq-module generated 
by a highest weight vector v of weight A. Then 

(i) The scalar A is of the form A = c qn where c = ±1 and n is the integer 
defined by dim (V) = n + 1. 

(ii) Setting vp = FPv/[p]!, we have vp = 0 for p > n and, in addition, 
the set {v = vO,v1 , ..• ,vn } is a basis ofV. 

(iii) The operator K acting on V is diagonalizable with the (n+1) distinct 
. I {n n-2 -n+2 -n} ezgenva ues cq ,cq , ... , cq , cq . 
(iv) Any other highest weight vector in V is a scalar multiple ofv and is 

of weight A. 
( v) The module V is simple. 
(b) Any simple finite-dimensional Uq-module is generated by a high-

est weight vector. Two finite-dimensional U -modules generated by highest 
weight vectors of the same weight are isomorphic. 

PROOF. (a) According to Lemma 3.4, the sequence {vp }P2:0 is a sequence of 
eigenvectors for K with distinct eigenvalues. Since V is finite-dimensional, 
there has to exist an integer n such that vn # 0 and vn+1 = O. The formulas 
of Lemma 3.4 then show that vm = 0 for all m > nand vm # 0 for all 
m :So n. By Lemma 3.4, we also have 

Hence, q-n A = qn A -1, which is equivalent to A = ± qn. The rest of the 
proof of (i)-(iii) is as in the classical case (see Theorem V.4.4). 

(iv) Let Vi be another highest weight vector. It is an eigenvector for the 
action of K; hence, it is a scalar multiple of some vector Vi' But, again by 
Lemma 3.4, the vector Vi is killed by E if and only i = O. 

(v) Let Vi be a non-zero Uq-submodule of V and let Vi be a highest 
weight vector of V'. Then Vi also is a highest weight vector for V. By (iv), 
Vi has to be a non-zero scalar multiple of v. Therefore v is in V'. Since v 
generates V, we must have V c V', which proves that V is simple. 

(b) The proof is the same as for Theorem V.4.4 (b). D 

Theorem 3.5 implies that, up to isomorphism, there exists a unique sim-
ple Uq - module of dimension n + 1 and generated by a highest weight vector 
of weight cqn. We denote this module by VE n and the corresponding mor-
phism of algebras Uq --+ by PE;,n-' Observe that the formulas of 
Lemma 3.4 may be rewritten as follows for 

Kv = cqn-2Pv 
P P' 

and 

(3.1) 

(3.2) 

(3.3) 
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As a special case, we have = k. The morphism Pc,a is given by 

Pc,a(K) = c, Pc,a(E) = Pc,a(F) = O. 

We shall see in VII.I that Pc,a may be identified with the counit of a Hopf 
algebra structure on Uq . It will imply that the module VI,a is trivial and 
that any trivial Uq-module is isomorphic to a direct sum of copies of VI,a' 
On the other hand, the module V_I a is not trivial. 

On the (n + 1 )-dimensional module Vc n' the generators E, F and K act 
by operators that can be represented the basis {va, vI' ... , vn } by the 
matrices 

0 [n] 0 0 
0 0 [n-I] 0 

Pc,n(E) = c 

0 0 I 
0 0 0 0 

0 0 0 0 
I 0 0 0 

Pc,n(F) = 0 [2] 0 0 

0 0 [n] 0 

and 
qn 0 0 0 
0 qn-2 0 0 

Pc,n(K) = c 
0 0 q-n+2 0 
0 0 0 q-n 

So far, we have built Uq-modules generated by highest weight vectors 
whose weights>. had special values. Let us now show that there exist highest 
weight modules with arbitrary highest weights. 

Let us fix a scalar>' #- O. Consider an infinite-dimensional vector space 
V(>.) with denumerable basis {VJiEN' For p 2 0, set 

(3.4) 

and EVa = O. 

Lemma VI.3.6. Relations (3.4-3.5) define a Uq-module structure on V(>.). 
The element va generates V(>.) as a Uq-module and is a highest weight vec-
tor of weight >.. 
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PROOF. Immediate computations yield 

We also have 

KK-1v = 
P 

KEK-1vp = 

[E,F]vp = 

This proves that Relations (3.4-3.5) define a Uq-module structure on V('\). 
Next, we have K Vo = .\ Vo and Evo = 0, which means that Vo is a highest 

weight vector of weight .\. Finally, (3.5) implies that vp = FPvo/[p]! for all 
p, which proves that V('\) is generated by vo' 0 

By analogy with the classical case, the highest weight Uq-module V('\) 
is called the Verma module of highest weight .\. It enjoys the following 
universal property. 

Proposition VI.3.7. Any highest weight Uq-module V of highest weight 
.\ is a quotient of the Verma module V('\). 

PROOF. Let v be a highest weight vector generating V. We define a linear 
map f from V('\) to V by f(vp) = l/[p]! FPv. Lemma 3.4 implies that f is 
Uq-linear. Since f(vo) = v generates V, the map f is surjective. 0 

In particular, the simple finite-dimensional module VE n described above 
is a quotient of the Verma module V(cqn). As a the module 
V('\) cannot be simple when .\ is of the form ±qn where n is a nonnegative 
integer. 

VI.4 The Harish-Chandra Homomorphism and 
the Centre of Uq 

Our next objective is to describe the centre Zq of Uq in case q is not a root 
of unity. We assume this throughout this section. 

We start by introducing a special central element of Uq • It is sometimes 
called the quantum Casimir element. 


