Chapter VI The Quantum Enveloping Algebra of $\mathfrak{s l}(2)$

The aim of Chapters VI-VII is to construct a Hopf algebra $U_{q}=U_{q}(\mathfrak{s l}(2))$ which is a one-parameter deformation of the enveloping algebra of the Lie algebra $\mathfrak{s l}(2)$ investigated in Chapter V, and which is in duality with the Hopf algebra $S L_{q}(2)$ defined in Chapter IV. It will be our second main example of a quantum group. When the parameter q is not a root of unity, the algebra U_{q} has properties parallel to those of the enveloping algebra of $\mathfrak{s l}(2)$. In the present chapter we classify the simple finite-dimensional modules of U_{q} and determine its centre. We close the chapter with a few considerations on the case when q is a root of unity.

We assume throughout this chapter that the ground field k is the field of complex numbers.

VI. 1 The Algebra $U_{q}(\mathfrak{s l}(2))$

Let us fix an invertible element q of k different from 1 and -1 so that the fraction $\frac{1}{q-q^{-1}}$ is well-defined. We introduce some notation.

For any integer n, set

$$
\begin{equation*}
[n]=\frac{q^{n}-q^{-n}}{q-q^{-1}}=q^{n-1}+q^{n-3}+\cdots+q^{-n+3}+q^{-n+1} \tag{1.1}
\end{equation*}
$$

These q-analogues are more symmetric than the ones defined in IV.2, as shown by the relations

$$
\begin{equation*}
[-n]=-[n] \quad \text { and } \quad[m+n]=q^{n}[m]+q^{-m}[n] \tag{1.2}
\end{equation*}
$$

Observe that, if q is not a root of unity, then $[n] \neq 0$ for any non-zero integer. This is not so when q is a root of unity. In that case, denote by d its order, i.e., the smallest integer >1 such that $q^{d}=1$. Since we assume $q^{2} \neq 1$, we must have $d>2$. Define also

$$
e=\left\{\begin{array}{cl}
d & \text { if } d \text { is odd } \tag{1.3}\\
d / 2 & \text { when } d \text { is even. }
\end{array}\right.
$$

Let us agree that $d=e=\infty$ when q is not a root of unity. Now it is easy to check that

$$
\begin{equation*}
[n]=0 \Longleftrightarrow n \equiv 0 \text { modulo } e \tag{1.4}
\end{equation*}
$$

We also have the following versions of factorials and binomial coefficients. For integers $0 \leq k \leq n$, set $[0]!=1$,

$$
\begin{equation*}
[k]!=[1][2] \ldots[k] \tag{1.5}
\end{equation*}
$$

if $k>0$, and

$$
\left[\begin{array}{l}
n \tag{1.6}\\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!} .
$$

These q-analogues are related to those of IV. 2 by

$$
\begin{equation*}
[n]=q^{-(n-1)}(n)_{q^{2}}, \quad[n]!=q^{-n(n-1) / 2}(n)!_{q^{2}} \tag{1.7}
\end{equation*}
$$

and

$$
\left[\begin{array}{c}
n \tag{1.8}\\
k
\end{array}\right]=q^{-k(n-k)}\binom{n}{k}_{q^{2}}
$$

With this new notation we can rewrite Proposition IV.2.2 as follows. If x and y are variables subject to the relation $y x=q^{2} x y$, then we have $(n>0)$

$$
(x+y)^{n}=\sum_{k=0}^{n} q^{k(n-k)}\left[\begin{array}{l}
n \tag{1.9}\\
k
\end{array}\right] x^{k} y^{n-k}
$$

Definition VI.1.1. We define $U_{q}=U_{q}(\mathfrak{s l}(2))$ as the algebra generated by the four variables E, F, K, K^{-1} with the relations

$$
\begin{gather*}
K K^{-1}=K^{-1} K=1 \tag{1.10}\\
K E K^{-1}=q^{2} E, \quad K F K^{-1}=q^{-2} F \tag{1.11}
\end{gather*}
$$

and

$$
\begin{equation*}
[E, F]=\frac{K-K^{-1}}{q-q^{-1}} \tag{1.12}
\end{equation*}
$$

The rest of the section is devoted to a few elementary properties of U_{q}. The following lemma has an easy proof left to the reader.

Lemma VI.1.2. There is a unique algebra automorphism of U_{q} such that

$$
\omega(E)=F, \quad \omega(F)=E, \quad \omega(K)=K^{-1} .
$$

The automorphism ω is sometimes called the Cartan automorphism. We now state a q-analogue of Lemma V.3.1.

Lemma VI.1.3. Let $m \geq 0$ and $n \in \mathbf{Z}$. The following relations hold in U_{q} :

$$
\begin{aligned}
& E^{m} K^{n}=q^{-2 m n} K^{n} E^{m}, \quad F^{m} K^{n}=q^{2 m n} K^{n} F^{m} \\
& {\left[E, F^{m}\right]}
\end{aligned} \begin{aligned}
& {[m] F^{m-1} \frac{q^{-(m-1)} K-q^{m-1} K^{-1}}{q-q^{-1}} } \\
&=[m] \frac{q^{m-1} K-q^{-(m-1)} K^{-1}}{q-q^{-1}} F^{m-1} \\
& {\left[E^{m}, F\right] }=[m] \frac{q^{-(m-1)} K-q^{m-1} K^{-1}}{q-q^{-1}} E^{m-1} \\
&=[m] E^{m-1} \frac{q^{m-1} K-q^{-(m-1)} K^{-1}}{q-q^{-1}}
\end{aligned}
$$

Proof. The first two relations result trivially from Relations (1.11). The third one is proved by induction on m using

$$
\left[E, F^{m}\right]=\left[E, F^{m-1}\right] F+F^{m-1}[E, F]=\left[E, F^{m-1}\right] F+F^{m-1} \frac{K-K^{-1}}{q-q^{-1}}
$$

as in the proof of Lemma V.3.1. Applying the automorphism ω to the third relation, one gets the fourth one.

We now describe a basis of U_{q} by showing that U_{q} is an iterated Ore extension. We refer to I.7-8 for information concerning Ore extensions.

Proposition VI.1.4. The algebra U_{q} is Noetherian and has no zero divisors. The set $\left\{E^{i} F^{j} K^{\ell}\right\}_{i, j \in \mathbf{N} ; \ell \in \mathbf{Z}}$ is a basis of U_{q}.

Proof. Define $A_{0}=k\left[K, K^{-1}\right]$. We shall construct two Ore extensions $A_{1} \subset A_{2}$ such that A_{2} is isomorphic to U_{q}. First, observe that the algebra A_{0} has no zero divisors and is Noetherian as a quotient of a (Noetherian) two-variable polynomial algebra. The family $\left\{K^{\ell}\right\}_{\ell \in \mathbf{Z}}$ is a basis of A_{0}.

Consider the automorphism α_{1} of A_{0} determined by $\alpha_{1}(K)=q^{2} K$ and the corresponding Ore extension $A_{1}=A_{0}\left[F, \alpha_{1}, 0\right]$: the latter has a basis consisting of the monomials $\left\{F^{j} K^{\ell}\right\}_{j \in \mathbf{N}, \ell \in \mathbf{Z}}$. An argument analogous to the one used to prove Lemma IV.4.2 shows that A_{1} is the algebra generated by F, K, K^{-1} and the relation $F K=q^{2} K F$.

We now build an Ore extension $A_{2}=A_{1}\left[E, \alpha_{1}, \delta\right]$ from an automorphism α_{1} and an α_{1}-derivation of A_{1}. The automorphism α_{1} is defined by

$$
\begin{equation*}
\alpha_{1}\left(F^{j} K^{\ell}\right)=q^{-2 \ell} F^{j} K^{\ell} . \tag{1.13}
\end{equation*}
$$

Let us take as given for a moment that there exists an α_{1}-derivation δ such that

$$
\delta(F)=\frac{K-K^{-1}}{q-q^{-1}} \quad \text { and } \quad \delta(K)=0 .
$$

Then the following relations hold in A_{2} :

$$
E K=\alpha_{1}(K) E+\delta(K)=q^{-2} K E
$$

and

$$
E F=\alpha_{1}(F) E+\delta(F)=F E+\frac{K-K^{-1}}{q-q^{-1}} .
$$

From these one easily concludes that A_{2} is isomorphic to U_{q}. It then results from Corollary I.7.2 and from Theorem I.8.3 that U_{q} has the required properties.

It remains to prove the following technical lemma in order to complete the proof of Proposition 1.4.

Lemma VI.1.5. Denote by $\delta(F)(K)$ the Laurent polynomial $\frac{K-K^{-1}}{q-q^{-1}}$, and set $\delta\left(K^{\ell}\right)=0$ and

$$
\begin{equation*}
\delta\left(F^{j} K^{\ell}\right)=\sum_{i=0}^{j-1} F^{j-1} \delta(F)\left(q^{-2 i} K\right) K^{\ell} \tag{1.14}
\end{equation*}
$$

when $j>0$. Then δ extends to an α_{1}-derivation of A_{1}.
Proof. We must check that, for all $j, m \in \mathbf{N}$ and all $\ell, n \in \mathbf{Z}$, we have

$$
\begin{equation*}
\delta\left(F^{j} K^{\ell} \cdot F^{m} K^{n}\right)=\alpha_{1}\left(F^{j} K^{\ell}\right) \delta\left(F^{m} K^{n}\right)+\delta\left(F^{j} K^{\ell}\right) F^{m} K^{n} \tag{1.15}
\end{equation*}
$$

Let us compute the right-hand side of (1.15) using (1.11), (1.13), and (1.14). We have

$$
\begin{aligned}
& \alpha_{1}\left(F^{j} K^{\ell}\right) \delta\left(F^{m} K^{n}\right)+\delta\left(F^{j} K^{\ell}\right) F^{m} K^{n} \\
& \quad=\sum_{i=0}^{m-1} q^{-2 \ell} F^{j} K^{\ell} F^{m-1} \delta(F)\left(q^{-2 i} K\right) K^{n} \\
& \quad+\sum_{i=0}^{j-1} F^{j-1} \delta(F)\left(q^{-2 i} K\right) K^{\ell} F^{m} K^{n}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{i=0}^{m-1} q^{-2 \ell-2 \ell(m-1)} F^{j+m-1} \delta(F)\left(q^{-2 i} K\right) K^{\ell+n} \\
& \quad+\sum_{i=0}^{j-1} q^{-2 \ell m} F^{m+j-1} \delta(F)\left(q^{-2 i-2 m} K\right) K^{\ell+n} \\
= & \sum_{i=0}^{m-1} q^{-2 \ell m} F^{m+j-1} \delta(F)\left(q^{-2 i} K\right) K^{\ell+n} \\
& \quad+\sum_{i=m}^{j+m-1} q^{-2 \ell m} F^{m+j-1} \delta(F)\left(q^{-2 i} K\right) K^{\ell+n} \\
= & q^{-2 \ell m}\left(\sum_{i=0}^{j+m-1} F^{j+m-1} \delta(F)\left(q^{-2 i} K\right) K^{\ell+n}\right) \\
= & q^{-2 \ell m} \delta\left(F^{j+m} K^{\ell+n}\right) \\
= & \delta\left(F^{j} K^{\ell} \cdot F^{m} K^{n}\right) .
\end{aligned}
$$

VI. 2 Relationship with the Enveloping Algebra of $\mathfrak{s l}(2)$

One expects to recover $U=U(\mathfrak{s l}(2))$ from U_{q} by setting $q=1$. This is impossible with Definition 1.1. So we first have to give another presentation for U_{q}.
Proposition VI.2.1. The algebra U_{q} is isomorphic to the algebra U_{q}^{\prime} generated by the five variables E, F, K, K^{-1}, L and the relations

$$
\begin{gather*}
K K^{-1}=K^{-1} K=1, \tag{2.1}\\
K E K^{-1}=q^{2} E, \quad K F K^{-1}=q^{-2} F, \tag{2.2}\\
{[E, F]=L, \quad\left(q-q^{-1}\right) L=K-K^{-1},} \tag{2.3}\\
{[L, E]=q\left(E K+K^{-1} E\right), \quad[L, F]=-q^{-1}\left(F K+K^{-1} F\right)} \tag{2.4}
\end{gather*}
$$

Observe that, contrary to U_{q}, the algebra U_{q}^{\prime} is defined for all values of the parameter q, in particular for $q=1$. In some sense, it would have been better to proceed through the whole theory of the quantum enveloping algebra of $\mathfrak{s l}(2)$ with U_{q}^{\prime} rather than with U_{q}, but the simpler presentation given in Section 1 is sufficient for our purposes.

Proof. Set

$$
\varphi(E)=E, \quad \varphi(F)=F, \quad \varphi(K)=K
$$

and

$$
\psi(E)=E, \quad \psi(F)=F, \quad \psi(K)=K, \quad \psi(L)=[E, F] .
$$

It is clear that φ gives rise to a well-defined morphism of algebras from U_{q} to U_{q}^{\prime}. Let us show that $\psi: U_{q}^{\prime} \rightarrow U_{q}$ is well-defined too. It suffices to check that the images under ψ of the defining Relations (2.1) hold in the algebra U_{q}. This is clearly true for Relations (2.1-2.2) and for $[E, F]=L$. For the remaining relation in (2.3) we have

$$
\left(q-q^{-1}\right) \psi(L)=\left(q-q^{-1}\right)[E, F]=K-K^{-1} .
$$

For the first relation in (2.4) we get

$$
\begin{aligned}
{[\psi(L), \psi(E)]=[[E, F], E] } & =\frac{1}{q-q^{-1}}\left[K-K^{-1}, E\right] \\
& =\frac{\left(q^{2}-1\right) E K+\left(q^{2}-1\right) K^{-1} E}{q-q^{-1}} \\
& =q\left(E K+K^{-1} E\right) .
\end{aligned}
$$

One derives the last relation in a similar fashion.
The reader may now verify that φ and ψ are reciprocal algebra morphisms by checking the necessary relations on the generators.

The relationship with the enveloping algebra U is given in the following statement.

Proposition VI.2.2. If $q=1$, we have

$$
U_{1}^{\prime} \cong U[K] /\left(K^{2}-1\right) \quad \text { and } \quad U \cong U_{1}^{\prime} /(K-1) .
$$

Proof. It suffices to prove the first isomorphism. Now U_{1}^{\prime} has the following presentation: it is generated by E, F, K, K^{-1}, L and Relations (2.1-2.4) in which q has been replaced by 1 , namely

$$
\begin{gather*}
K K^{-1}=K^{-1} K=1, \tag{2.5}\\
K E K^{-1}=E, \quad K F K^{-1}=F, \tag{2.6}\\
{[E, F]=L, \quad K-K^{-1}=0,} \tag{2.7}\\
{[L, E]=\left(E K+K^{-1} E\right), \quad[L, F]=-\left(F K+K^{-1} F\right) .} \tag{2.8}
\end{gather*}
$$

Relations (2.5-2.6) imply that K is central. Relation (2.7) yields $K^{2}=1$, which allows one to rewrite the Relations (2.8) as

$$
\begin{equation*}
[L, E]=2 E K, \quad[L, F]=-2 F K . \tag{2.9}
\end{equation*}
$$

We then get an isomorphism from U_{1}^{\prime} to $U[K] /\left(K^{2}-1\right)$ by sending E to $X K, F$ to Y, K to K, and L to $H K$.

In particular, the projection of U_{1}^{\prime} onto U is obtained by sending E to X, F to Y, K to 1 , and L to H. One may use this projection to rederive certain relations in U (for instance, Lemma V.3.1) from their q-analogues in U_{q}^{\prime}.

VI. 3 Representations of U_{q}

We assume in this section that the complex parameter q is not a root of unity. Our aim is to determine all finite-dimensional simple U_{q}-modules under this assumption by closely following the methods of Section V.4.

For any U_{q}-module V and any scalar $\lambda \neq 0$, we denote by V^{λ} the subspace of all vectors v in V such that $K v=\lambda v$. The scalar λ is called a weight of V if $V^{\lambda} \neq\{0\}$.
Lemma VI.3.1. We have $E V^{\lambda} \subset V^{q^{2} \lambda}$ and $F V^{\lambda} \subset V^{q^{-2} \lambda}$.
Proof. For $v \in V^{\lambda}$ we have

$$
K(E v)=q^{2} E(K v)=q^{2} \lambda E v \quad \text { and } \quad K(F v)=q^{-2} F(K v)=q^{-2} \lambda F v .
$$

Definition VI.3.2. Let V be a U_{q}-module and λ be a scalar. An element $v \neq 0$ of V is a highest weight vector of weight λ if $E v=0$ and if $K v=\lambda v$. $A U_{q}$-module is a highest weight module of highest weight λ if it is generated by a highest weight vector of weight λ.

Proposition VI.3.3. Any non-zero finite-dimensional U_{q}-module V contains a highest weight vector. Moreover, the endomorphisms induced by E and F on V are nilpotent.

Proof. Since $k=\mathbf{C}$ is algebraically closed and V is finite-dimensional, there exists a non-zero vector w and a scalar α such that $K w=\alpha w$. If $E w=0$, the vector w is a highest weight vector and we are done. If not, let us consider the sequence of vectors $E^{n} w$ where n runs over the nonnegative integers. According to Lemma 3.1, it is a sequence of eigenvectors with distinct eigenvalues; consequently, there exists an integer n such that $E^{n} w \neq 0$ and $E^{n+1} w=0$. The vector $E^{n} w$ is a highest weight vector.
In order to show that the action of E on V is nilpotent, it suffices to check that 0 is the only possible eigenvalue of E. Now, if v is a non-zero eigenvector for E with eigenvalue $\lambda \neq 0$, then so is $K^{n} v$ with eigenvalue $q^{-2 n} \lambda$. The endomorphism E would then have infinitely many distinct eigenvalues, which is impossible. The same argument works for F.

Lemma VI.3.4. Let v be a highest weight vector of weight λ. Set $v_{0}=v$ and $v_{p}=\frac{1}{[p]!} F^{p} v$ for $p>0$. Then

$$
K v_{p}=\lambda q^{-2 p} v_{p}, \quad E v_{p}=\frac{q^{-(p-1)} \lambda-q^{p-1} \lambda^{-1}}{q-q^{-1}} v_{p-1}, \quad F v_{p-1}=[p] v_{p}
$$

Proof. These relations result from Lemma 1.3.
We now determine all finite-dimensional simple U_{q}-modules.

Theorem VI.3.5. (a) Let V be a finite-dimensional U_{q}-module generated by a highest weight vector v of weight λ. Then
(i) The scalar λ is of the form $\lambda=\varepsilon q^{n}$ where $\varepsilon= \pm 1$ and n is the integer defined by $\operatorname{dim}(V)=n+1$.
(ii) Setting $v_{p}=F^{p} v /[p]$!, we have $v_{p}=0$ for $p>n$ and, in addition, the set $\left\{v=v_{0}, v_{1}, \ldots, v_{n}\right\}$ is a basis of V.
(iii) The operator K acting on V is diagonalizable with the $(n+1)$ distinct eigenvalues $\left\{\varepsilon q^{n}, \varepsilon q^{n-2}, \ldots, \varepsilon q^{-n+2}, \varepsilon q^{-n}\right\}$.
(iv) Any other highest weight vector in V is a scalar multiple of v and is of weight λ.
(v) The module V is simple.
(b) Any simple finite-dimensional U_{q}-module is generated by a highest weight vector. Two finite-dimensional U-modules generated by highest weight vectors of the same weight are isomorphic.

Proof. (a) According to Lemma 3.4, the sequence $\left\{v_{p}\right\}_{p \geq 0}$ is a sequence of eigenvectors for K with distinct eigenvalues. Since V is finite-dimensional, there has to exist an integer n such that $v_{n} \neq 0$ and $v_{n+1}=0$. The formulas of Lemma 3.4 then show that $v_{m}=0$ for all $m>n$ and $v_{m} \neq 0$ for all $m \leq n$. By Lemma 3.4, we also have

$$
0=E v_{n+1}=\frac{q^{-n} \lambda-q^{n} \lambda^{-1}}{q-q^{-1}} v_{n}
$$

Hence, $q^{-n} \lambda=q^{n} \lambda^{-1}$, which is equivalent to $\lambda= \pm q^{n}$. The rest of the proof of (i)-(iii) is as in the classical case (see Theorem V.4.4).
(iv) Let v^{\prime} be another highest weight vector. It is an eigenvector for the action of K; hence, it is a scalar multiple of some vector v_{i}. But, again by Lemma 3.4, the vector v_{i} is killed by E if and only $i=0$.
(v) Let V^{\prime} be a non-zero U_{q}-submodule of V and let v^{\prime} be a highest weight vector of V^{\prime}. Then v^{\prime} also is a highest weight vector for V. By (iv), v^{\prime} has to be a non-zero scalar multiple of v. Therefore v is in V^{\prime}. Since v generates V, we must have $V \subset V^{\prime}$, which proves that V is simple.
(b) The proof is the same as for Theorem V.4.4 (b).

Theorem 3.5 implies that, up to isomorphism, there exists a unique simple U_{q}-module of dimension $n+1$ and generated by a highest weight vector of weight εq^{n}. We denote this module by $V_{\varepsilon, n}$ and the corresponding morphism of algebras $U_{q} \rightarrow \operatorname{End}\left(V_{\varepsilon, n}\right)$ by $\rho_{\varepsilon, n}$. Observe that the formulas of Lemma 3.4 may be rewritten as follows for $V_{\varepsilon, n}$:

$$
\begin{gather*}
K v_{p}=\varepsilon q^{n-2 p} v_{p} \tag{3.1}\\
E v_{p}=\varepsilon[n-p+1] v_{p-1} \tag{3.2}
\end{gather*}
$$

and

$$
\begin{equation*}
F v_{p-1}=[p] v_{p} \tag{3.3}
\end{equation*}
$$

As a special case, we have $V_{\varepsilon, 0}=k$. The morphism $\rho_{\varepsilon, 0}$ is given by

$$
\rho_{\varepsilon, 0}(K)=\varepsilon, \quad \rho_{\varepsilon, 0}(E)=\rho_{\varepsilon, 0}(F)=0 .
$$

We shall see in VII. 1 that $\rho_{\varepsilon, 0}$ may be identified with the counit of a Hopf algebra structure on U_{q}. It will imply that the module $V_{1,0}$ is trivial and that any trivial U_{q}-module is isomorphic to a direct sum of copies of $V_{1,0}$. On the other hand, the module $V_{-1,0}$ is not trivial.

On the $(n+1)$-dimensional module $V_{\varepsilon, n}$, the generators E, F and K act by operators that can be represented on the basis $\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ by the matrices

$$
\begin{gathered}
\rho_{\varepsilon, n}(E)=\varepsilon\left(\begin{array}{ccccc}
0 & {[n]} & 0 & \cdots & 0 \\
0 & 0 & {[n-1]} & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & \ddots & 1 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right), \\
\rho_{\varepsilon, n}(F)=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0 \\
0 & {[2]} & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & {[n]} & 0
\end{array}\right),
\end{gathered}
$$

and

$$
\rho_{\varepsilon, n}(K)=\varepsilon\left(\begin{array}{ccccc}
q^{n} & 0 & \cdots & 0 & 0 \\
0 & q^{n-2} & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & q^{-n+2} & 0 \\
0 & 0 & \cdots & 0 & q^{-n}
\end{array}\right) .
$$

So far, we have built U_{q}-modules generated by highest weight vectors whose weights λ had special values. Let us now show that there exist highest weight modules with arbitrary highest weights.

Let us fix a scalar $\lambda \neq 0$. Consider an infinite-dimensional vector space $V(\lambda)$ with denumerable basis $\left\{v_{i}\right\}_{i \in \mathbf{N}}$. For $p \geq 0$, set

$$
\begin{gather*}
K v_{p}=\lambda q^{-2 p} v_{p}, \quad K^{-1} v_{p}=\lambda^{-1} q^{2 p} v_{p} \tag{3.4}\\
E v_{p+1}=\frac{q^{-p} \lambda-q^{p} \lambda^{-1}}{q-q^{-1}} v_{p}, \quad F v_{p}=[p+1] v_{p+1} \tag{3.5}
\end{gather*}
$$

and $E v_{0}=0$.
Lemma VI.3.6. Relations (3.4-3.5) define a U_{q}-module structure on $V(\lambda)$. The element v_{0} generates $V(\lambda)$ as a U_{q}-module and is a highest weight vector of weight λ.

Proof. Immediate computations yield

$$
\begin{array}{rlll}
K K^{-1} v_{p} & =v_{p}, & K^{-1} K v_{p} & =v_{p} \\
K E K^{-1} v_{p} & =q^{2} E v_{p}, & K F K^{-1} v_{p} & =q^{-2} F v_{p}
\end{array}
$$

We also have

$$
\begin{aligned}
{[E, F] v_{p} } & =\left([p+1] \frac{q^{-p} \lambda-q^{p} \lambda^{-1}}{q-q^{-1}}-[p] \frac{q^{-(p-1)} \lambda-q^{p-1} \lambda^{-1}}{q-q^{-1}}\right) v_{p} \\
& =\frac{q^{-2 p} \lambda-q^{2 p} \lambda^{-1}}{q-q^{-1}} v_{p} \\
& =\frac{K-K^{-1}}{q-q^{-1}} v_{p}
\end{aligned}
$$

This proves that Relations (3.4-3.5) define a U_{q}-module structure on $V(\lambda)$.
Next, we have $K v_{0}=\lambda v_{0}$ and $E v_{0}=0$, which means that v_{0} is a highest weight vector of weight λ. Finally, (3.5) implies that $v_{p}=F^{p} v_{0} /[p]$! for all p, which proves that $V(\lambda)$ is generated by v_{0}.

By analogy with the classical case, the highest weight U_{q}-module $V(\lambda)$ is called the Verma module of highest weight λ. It enjoys the following universal property.

Proposition VI.3.7. Any highest weight U_{q}-module V of highest weight λ is a quotient of the Verma module $V(\lambda)$.
Proof. Let v be a highest weight vector generating V. We define a linear $\operatorname{map} f$ from $V(\lambda)$ to V by $f\left(v_{p}\right)=1 /[p]!F^{p} v$. Lemma 3.4 implies that f is U_{q}-linear. Since $f\left(v_{0}\right)=v$ generates V, the map f is surjective.

In particular, the simple finite-dimensional module $V_{\varepsilon, n}$ described above is a quotient of the Verma module $V\left(\varepsilon q^{n}\right)$. As a consequence, the module $V(\lambda)$ cannot be simple when λ is of the form $\pm q^{n}$ where n is a nonnegative integer.

VI. 4 The Harish-Chandra Homomorphism and the Centre of U_{q}

Our next objective is to describe the centre Z_{q} of U_{q} in case q is not a root of unity. We assume this throughout this section.

We start by introducing a special central element of U_{q}. It is sometimes called the quantum Casimir element.

